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A complete second-order solution is presented for the two-dimensional wave motion 
forced by a generic planar wavemaker. The wavemaker is doubly articulated and 
includes both piston and hinged wavemakers of variable draught. It is shown that 
the first-order evanescent eigenseries cannot be neglected when computing the 
amplitude of the second-order free wave. A previously neglected, time-independent 
solution that is required to satisfy an inhomogeneous kinematic boundary condition 
on the wavemaker as well as an inhomogeneous Neumann boundary condition on the 
free surface is examined in detail for the first time. This time-independent solution 
is found to accurately estimate the mean return flow in a closed wave flume 
computed by the Eulerian method. This mean return current due to Stokes drift is 
usually estimated using the principle of kinematic conservation of mass flux. Even 
though the first-order eigenseries will converge for any geometry of a generic planar 
wavemaker, the second-order solutions obtained from Stokes perturbation expan- 
sions will not converge for all planar wavemaker geometries. 

1. Introduction 
Havelock (1929) used Fourier integrals to develop a theory for forced surface 

gravity waves in water of both infinite and finite depth. Both planar and circular 
waves were treated. Kennard (1949) also used Fourier integrals but included the 
initial-value problem. Biesel & Suquet (1953) obtained explicit linear solutions for 
the wave motions generated by both a piston and a hinged wavemaker and Hyun 
(1976) later extended that work to include hinged wavemakers of variable draught. 
The solution presented by Hyun (1976) was extended by Hudspeth & Chen (1981) to 
a wave flumes consisting of two constant-depth regions connected by a gradually 
sloping transition region. Wave heights predicted by these wavemaker theories have 
been verified experimentally for piston wavemakers by Ursell, Dean & Yu (1960), 
Galvin (1964), and Keating & Webber (1977) ; and for hinged wavemakers of variable 
draught by Galvin (1964), Pate1 & Ionnaou (1980), and Hudspeth, Leonard & Chen 
(1981). When relatively long waves of finite amplitudes are generated by a 
sinusoidally moving wavemaker, it has been observed (Goda & Kikuya 1964; Multer 
& Galvin 1967; Iwagaki & Sakai 1970) that the propagating wave is not of 
permanent form as predicted by the linear solution, but rather breaks down into a 
primary wave and one or more secondary waves. The advancement of nonlinear 
wavemaker theories in both time and frequency domains has been stimulated, in 
part, because this secondary wave phenomenon is not predicted by the linear 
wavemaker solutions. 
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Fontanet (1 961) developed a complete second-order nonlinear theory in 
Lagrangian coordinates for the waves generated by a sinusoidally moving plane 
wavemaker. However, his solution is relatively complicated to use and results are 
presented only for piston wavemakers. Madsen (1971) obtained a more useful 
approximate solution using a Stokes expansion for a piston wavemaker. However, 
his second-order solution neglected the effects of the first-order evanescent 
eigenmodes, so that the results are valid only for long waves. Multer (1973) solved 
the piston wavemaker problem numerically. Daugaard (1972) included the effects of 
the first-order evanescent eigenmodes using a Stokes expansion to obtain a second- 
order solution for a piston wavemaker. However, his second-order solution also 
neglected the effects of the first-order evanescent eigenmodes on the free-surface 
boundary conditions near the wavemaker and, accordingly, represents only an 
approximate solution to the complete second-order problem. 

Flick & Gum (1980) analysed, using a Stokes expansion, the motion of a wavemaker 
that is hinged either on or below the channel bottom. They evaluated the 
relationship between the second-harmonic (secondary) waves forced by the 
wavemaker and the Stokes waves by computing the coefficients for the propagating 
eigenmode numerically. Analytical expressions for the coefficients in their second- 
order solution were not presented. However, their solution, like that of Daugaard 
(1972), also neglected the interactions of the first-order evanescent eigenmodes a t  the 
free-surface boundary near the wavemaker because they reasoned that these 
evanescent eigenmodes do not contribute to the propagating waves. Furthermore, 
their solution as well as those of Madsen (1971) and Daugaard (1972) is not complete 
because they neglected the time-independent, second-order solutions which are 
required to satisfy exactly the boundary conditions at the wavemaker and at  the still 
water level. 

Massel (1981) attempted to extend the work of Flick & Guza (1980) by including 
a time-independent solution for the kinematic boundary condition at  the wavemaker. 
Since he neglected the effects of the first-order evanescent eigenmodes in the second- 
order boundary conditions, his time-independent solution does not satisfy the 
second-order boundary-value problem. A complete second-order solution is still 
needed in order to describe the nonlinear fluid motion generated by a planar 
wavemaker. 

The theoretical and experimental investigations of nonlinear wavemaker- 
generated sloshing waves (cf. Kit, Shemer & Miloh 1987 for a recent list of references) 
or parametrically excited cross-waves generated by a plane wavemaker at a 
subharmonic frequency (cf. Miles & Becker 1988 for a recent list of references) are 
focused on the motion of the free surface in the far field and do not require the near- 
field information associated with either the near-field evanescent eigenmodes or the 
time-independent potentials obtained here. 

In  $ 2, a complete analytical solution that is correct to second order in the wave 
slope is presented for the fluid motion forced by a sinusoidally moving generic planar 
wavemaker. The generic planar wavemaker is doubly articulated and includes both 
piston and hinged wavemakers of variable draught. Three time-dependent and two 
time-independent potentials are required in order to satisfy all of the boundary 
conditions at second-order. In $3, the mean horizontal momentum per unit area is 
computed using both the Eulerian and Lagrangian velocities. 
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2. Nonlinear wavemaker theory 

made dimensionless as follows : 
For convenience, all physical variables (denoted by superscript asterisks) will be 

( x , z , h , d , b , d ) =  k*(x*,z*,h*,d*,b*,d*), ( t ,T )  = (g*k*)i(t*,T*), 

B* B = -  * P* ,=1 p=-  
A* ' p*A*g* ' A*g* ' 

in which A* is the amplitude of the first-harmonic wave component; k* (= 27r/L*) 
the propagating wavenumber ; L* the wavelength ; g* the gravitational constant ; p* 
the fluid mass density ; S* the amplitude of the wavemaker stroke ; and T* the wave 
period (= the period of the wavemaker oscillation). 

We consider a generic, two-dimensional wavemaker configuration E(z/h), described 
in Cartesian coordinates, which generates two-dimensional, irrotational motion of an 
inviscid, incompressible fluid in a semi-infinite channel of constant, still water depth 
h. The fluid motion is obtained from the negative gradient of a scalar velocity 
potential @(x, z, t )  according to 

where V(-) = [a/ax,a/az]. 

I 

[u, w] = -V@, (1) 

The scalar velocity potential @(x, z, t )  is a solution to 

with boundary conditions 

-0 ;  2 2 s  - x(- h , t ) ;  z=-h ,  C'.) a@ 
az 
_ -  

(9') -+--[€--$2V@.v IV@l2+- = 0; x 2 € A* x(, ,  t ) ,  2 = €,(",t), ( 2 c )  
at2  a2 at I dt 

a@ a dB 

where B(t) is the Bernoulli constant (Wehausen 1960; Mei 1983), which we use 
instead of ?) (Dean & Dalrymple 1984), and the small parameter = k*A* 4 1. In  
addition, a radiation condition is required as x+ + 00 in order to ensure that 
propagating waves are only right-progressing or that the fluid velocities are bounded. 

(3) 

For the double-articulated plane wavemaker of variable draught shown in figure 

The displacement of the generic wavemaker is 

x(z ,  t )  = 6(z/h) sin (0, t + y ) ,  

where &/h) is a generic shape function. 

1, the generic shape function is 
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FIUURE 1. Definition sketch for a generic double-articulated planar wavemaker of variable 
draught. 

where U( * ) is the Heaviside step function and 

where X* is the dimensional wavemaker stroke measured at  an arbitrary elevation 
z / h  = - 1 + ( d / h )  + (d , /h)  + ( d / h )  above the wave flume bottom. A piston wavemaker 
is represented by S,*/S* = 1 ; and a wavemaker of full-depth draught is represented 
by b/h  = d / h  = 0. 

The free-surface profile is 

q(x, t )  = E-$lV@l'+B( t )  at ; z 2 8 x(q ,  t ) ,  2 = € q ( q  t ) ,  ( 5 )  

and the total pressure 

The free-surface conditions and the wavemaker kinematic boundary condition 
may be expanded in a Maclaurin as 



Stokes drift in two-dimensional wave flumes 213 

In addition, the following variables are expanded in the small parameter E :  

( 8 4  

where p,(z) = Z / E  is the dimensionless hydrostatic pressure. 

following change of variables : 
The Lindstedt-Poincare' perturbation of the frequency by (8e) leads to the 

and, correspondingly, a free-surface operator defined by 

2.1. €0 solution 

The linear boundary value problem is 

V 1 @ = 0 ;  x > o ,  - h < z < O ,  

a #  L = o ;  z > o ,  z=-h ,  
az 

a7 
a B  

2Y0{,@}+wo' = 0; x 3 0, z = 0, 

where 

( 9 4  

A radiation condition is required aa x++ co that will admit only right-progressing 
waves or bounded evanescent eigenmodes. 

The first-order free-surface elevation and the dynamic pressure may be determined 
from 

+ q ( x , 7 )  = oo-++B(7); a 1@ x > 0, z = 0, (11) 
a7 

1P(Z,Z,7) = o ~ - + + B ( ~ ) ;  a I @  x > 0, --h < z < 0. (12) 
a7 
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The linear solution that is simple-harmonic is 
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1@(X,Z,7 )  = - u , $ ~  s i n ( z - ~ - ~ ) - c o s ( ~ + y )  am$, exp(-a,x), (13) 
m-0 

201, h + sin 2a, h 
n& = ~ , c o s 2 [ a , h ( 1 + ~ ) ] d ( ~ ) =  4a,h 

provided that ,B is identically zero and that 

wih+amhtana,h = 0, ( 1 4 4  
and that a, = +i  = + d( - 1) in (14). 

( 4 a )  are 
The coefficients a,,, for the generic shape function for a planar wavemaker given by 

where 

$ , ( O )  cosh (b , )  [tanh (h) - tanh (b , ) ]  - $; 

+M{ $1(0) cosh (b,) [b,(tanh (b,) - tanh (h)) 

- 1 + tanh (h) tanh (b , ) ]  

+$,(%- 1 ) [  1 +h( 1 -%) tanh (d,)]}, 

$,(O) cos (a, b,) [tan (a, b,) - tan (a, h)] 

+ ~ ~ ~ - ~ ) } + ~ { ~ r n ~ ~ ) ~ o s ( a m ~ u ) [ a r n ~ , ( t a n ( ~ m ~ )  

-tan (a, b, ) )  - 1 -tan (a, h) tan (a, b,)] 

+ $, @- 1) [ 1 -a, h (1 - 2) tan (a, d,)]] ; m 2 2, 

6 ,  = b U ( b / h )  ; d, = d U(d/h), 

sinh h( 1 + ( * )) sin a, h( 1 + ( * )) 
; #A(*)= ; m.22, (15% h) 

n1 nm 
$;(*I = 

where U( - )  is the Heaviside step function which is required in order to ensure that 
negative values of the dimensions b or d are not used in the arguments of the 
transcendental functions in (15c, d ) .  Recall that a piston wavemaker may be 
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recovered from (15) when S,*/S* = 1 and a wavemaker of full-depth draught when 
b / h  = d / h  = 0. 

For generic planar wavemakers, the evanescent eigenseries in (13)  converges at 
least as fast as am (a, h)-2 - [ ( m -  1) R ] - ~ .  However, when b / h  = 0, the convergence 
improves to a, (am h)-3 - [(m- 1) R ] - ~  for a piston wavemaker of full-depth 
draught and for a hinged wavemaker of variable draught if M-‘ E 1 +d,/d. This 
difference in the convergence of the first-order eigenseries will become important in 
estimating the convergence of second-order series ; and will limit the geometries of 
planar wavemakers which can be solved using Stokes expansions. 

Far away from the wavemaker ( s / h  > 3, say) the free-surface profile is 

1q(2,r) = cos(x-r--y) (16) 
so that the dimensionless wavemaker gain function becomes 

which is valid for both hinged (S,* =k S*) and piston (S,* = S*) wavemakers of 
variable draught. 

Equation (17)  reduces (15a, b)  for the coefficients of the linear first-order potential 
to the following far-field expressions : 

a, = [wO+l(o)l-l, (184  

Some of the inner products required for the second-order e solution may be 
simplified by substituting (3) and (13) into (9d) and noting that 

Equations (18) are valid for both piston (H = 0) and hinged (M =t= 0) wavemakers 
of variable draught. 

The boundary value problem correct to second-order in e is 

2.2. el solution 

V 2 2 @ = O ;  ~ 2 0 ,  - h < z < O ,  
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The vertical derivative in the second term on the right-hand side of (19d) is in a 
form that is especially convenient for employing the first-order orthonormal 
eigenfunctions in ( 18 c) . 

The solution to (19) must also satisfy a radiation condition as x+ 00 that will 
admit only right-progressing waves or bounded fluid velocities. Because (19d) is an 
inhomogeneous Neumann condition, any constant times x may also be used for any 
time-independent solution for 2@. 

The free-surface elevation and dynamic pressure are 

where for a zero-mean free-surface elevation, 
2 

,$ = (5) 
2% 

and a,$/& = 0 in (19c). In  addition, the first term on the right-hand side of (19c) 
must vanish since a2 ,@/W is a homogeneous solution of the linear operator so( ) on 
the left-hand side of (19c) and would introduce a secular term of the form 73 
in the solution for 2@. Since wo > 0, it is required that 

0, = 0, (23) 
which implies that the propagating wavenumber k* is a constant correct to second- 
order E .  Consequently, the linear dispersion equations (14c) may be used to reduce 
some transcendental expressions a t  second-order in E .  However, the expression which 
results from the use of (14c) would not be valid for higher-order approximations. 

It is customary in well-posed boundary-value problems with inhomogeneous 
boundary conditions on orthogonal boundaries such as those given by (19c, d )  to 
linearly decompose the solution into complementary homogeneous and in- 
homogeneous solutions. Accordingly, the solution to (19) may be expressed as a 
linear combination of four scalar velocity potentials given by 

2@ = 2 @ s + 2 @ e + 8 @ f + 2 Y ,  (24) 
in which z~ is the second-order Stokes wave potential that is independent of the 
wavemaker motion (cf. Flick & Guza 1980) ; 2@e is a evanescent interaction potential ; 
n@f is a wavemaker-forced potential; and 2!P is a time-independent potential that is 
required in order to satisfy (19c, d).  The inhomogeneous boundary conditions in 
(1 9 c, d ) become 

90{2@s+ ,Qe+ 2@r + 2y3 = ~ ~ f , ( q 5 ~ )  sin 2(z-r--y) 

-a,sin(x-27-2~) C amexP(--mz)fz(A, 9 m )  
m-2 

- a1 (X - 27 - 27) X a m  exp ( - a m  z).f3(91 9 9 m  
m-2 

-sin2(7+y) X X a m a , e x ~ [ - ( ( o r m + o l , ) z I f , ( 9 m , 9 , )  
m-2 n-2 

-a,cosx C amexp(-(ormx)f,(9,,9,); x20, z = O  
m-2 

( 2 5 4  
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and 

2h 
a 

-{2$S+2@e+2@f+2Y3 = [l--cos2(7+y)] 
ax 

; x = O ,  - h < z < O ,  (25b) 
sin 2( 7 + y ) + 

2h m-2 

in which the nonlinear, free-surface interaction terms f , ,  f2, f 3 ,  f4 and f6 and the 
nonlinear wavemaker interaction terms W, and W2 are defined in the Appendix. The 
time-independent forcing terms given by f5($1, $,) and by W,($,, 6, z/h) appear to 
have been completely neglected in previously published solutions ; while the 
evanescent interaction forcing terms f2($1, 9,) and f3($,, $,) appear to have been 
only partially considered. 

The second-order Stokes wave potential 2@s satisfies (19a, b) ,  a radiation condition, 
and 

and is (Stokes 1847) 
9 0 { 2 ~ } - a ~ f l ( ~ 1 ) ~ i n 2 ( x - ~ - y )  = 0;  x 2 0, z = 0 (26) 

4f 1% 1 
2 ( 2 4  - tanh 2h) cosh 2h 

) cosh 2h (1 +:) sin 2(x- 7 - y )  2@s = - 

-sin 2(7+y) X Z a, a, exp [- (a, +an) x] C,, 
m-2 n-2 

where A, = -i&o{[wi(tanhh-am tanamh)-4a, tanhhtana,h+ak-11 

x (tanh h-a, tan a, h-44)  + 16wi a, tanh h tan a, h 
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-4(a,tana,h+a~tanhh)}[DET-'(A,,B,)] 

w0[(4w:+aL- 1)2+(2a,)2] ' 

x (a, tanh h + tan a, h - 4 4  tanh h tan a, h) 

-4am(4wi+a, tana,h- tanh h)} [DET-'(A,,B,)] 

a, [ (4w: + a: - 1) ( 6 4  + a; - 1) - SaL] 
20, [(4wt+a;- 1)2+(2am)2] 

- ak[3(4wi +a; - 1) + 241 - 

B, = -&o{[ui(tanh h-a, tan a, h) -4  a, tanh h tana, h+a;- 13 

= -- 
9 

(304 

c,, = -kJ 4 0  

1 (a, + ad2 + 201, a, - w:(a, tan a, h + a, tan a,, h) + 4a, a,, tan a, h tan a, h 
4 4  1 -tan a, h tana, h) + (a, +a,) (tan a, h+ tan a,, h) [ 

, (304 
=- a, a,, [ (a ,  + a,)' + 2a, a,, + Soil 

4w0 [(2wi12 + (a,-an)21 
DET (A,, B,) = 8wi[(2wi tanh h tan a, h- tan a, h- a, tanh h) tanh h tan a, h 

+ 2 4  - tanh h +a, tan a, h] + (a: + 1) (tan2 a, h + tanh2 h) 

= (51 [(4w~+a~-~)2+(2am)2] ,  ( 3 0 d )  

correct to second-order in E .  

For generic planar wavemakers where the first-order evanescent eigenseries 
converges only as fast as a, => (a, h)-2 N [(m- 1) x]-~,  the single summation series in 
(29) will converge at least as fast as a,B, a (a, h)-'; and the double summation 
series in (29) will converge at least as fast as a, C,, a (a, h)-l. This limits the 
practical application of the evanescent interaction potential 2@e to those planar 
wavemaker geometries where the convergence of the first-order evanescent 
eigenseries improves to a, +- (a, h)-$ - [(m- 1) x]-~.  

The wavemaker-forced potential 2@f must satisfy (19a, b), a homogeneous form of 
(lo), a radiation condition, and 

= O ;  x = O ,  - h < z G O  (31) 
sin 2(7 + y )  - 

2h m-2 

and is assumed to be given by 

2 @ f ( ~ , z , 7 )  = [E,cos (/?1x-2(~+y))+Flsin (plx-2(~+y))lQ1 

- C. exp ( -/?, x) [E, sin 2(7 + y )  +4 cos 2(7 + y)] Q5 
1-2 

where 
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provided that 4 ~ ; h + / 3 ~ h t a n p ~ h  = 0; j 2 1 

and that B1 = iPl in (33). 
The coefficients E5 and -E; may be computed from 

219 

(334 

where ( - * )’ = a/a(z/h) ( - . ) and where the identity 

has been used to make the double-sum term derived from W2(+,,&z/h) in (34a) 
symmetric. Substituting (30) and (A 8) into (34) and persevering through some very 
tedious algebra eventually gives 

where B1 = iP1. 
For generic planar wavemakers where the first-order evanescent eigenseries 

converges only as fast as a, == (a, h)-2 - [(m- 1) K ] - ~ ,  the single summation series in 
(36a) will converge at least as fast as a, aG2 K (a, h)-4 - [ (m-  l)]-4; and the double 
summation series in (36a) and the single summation series in (36b) will converge a t  
least as fast as a, a, K (a, h)-l - [(m- 1) 7rI-l. The eigenseries for Q5(z/h) will 
converge at least as fast as (#?, h)-3 - [(j- 1) K ] - ~ .  

Note that the coefficients E, and 4 in (36) depend on the first-order evanescent 
eigenseries ; even for the propagating free-wave potential, j = 1. This implies that the 
amplitude of the second-order free-wave computed from 2@f depends on the first- 
order evanescent eigenseries which cannot be neglected at second-order as previously 
reported. 

The dimensionless amplitude of the second-order free wave, u‘, may be computed 
from 

(364 a; = 2w0 Ql(0) [E; +F$ 
8 FLM 230 
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FIGURE 2. Dimensionless amplitude ratio a!Jai for a full-draught piston wavemaker (b/h = 
d/h = 0) : -, with the evanescent interaction potential ; ---, without the evanescent interaction 
potential (L  = 2 x ) .  

1 .o 
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0.6 
U: 

U; 
- 

0.4 

0.2 

I I I I 1 I 

0 0.2 0.4 0.6 0.8 1 .o 
h l L  

FIGUEE 3. Dimensionless amplitude ratio a!Jui for a full-draught hinged wavemaker (b/h = 
d/h = 0) : -, with the evanescent interaction potential; ---, without the evanescent interaction 
potential (L = 2 x ) .  

and the dimensionless amplitude of the second-order Stokes wave from 

cosh h (cosh 2h + 2)  
4 sinh3 h 

a: = 

The ratio of a',/.: for a full-draught piston wavemaker is shown in figure 2 and for 
a full-draught hinged wavemaker in figure 3. These ratios are also compared with the 
amplitude ratios in which the evanescent interaction potential z@e in (31) was 
neglected. 

2.3. Time-independent solutions 
An interesting feature of the second-order problem which has not been previously 
given much detailed attention is the time-independent potential 2'Y(z, z )  in (24) .  This 
time-independent solution is found to accurately estimate the mean return flow in a 
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wave flume computed by the Eulerian method. This mean return current due to 
Stokes drift is usually estimated from a principle of kinematic conservation of mass 
flux. 

The time-independent potential Y(x, z )  must satisfy 

V22!€'=O; ~ 2 0 ,  - h < z < O ,  (37 4 

2- - 0 ;  x20, z=-h,  a~ 
az (37 b )  

~ o { 2 ~ ~ - = - c c 1 c o s x  a 2 p  x a,exp(-a,x)f5($,,q5,); x 2 0 ,  z = O ,  (37c) 
az m-2 

Since the time-independent solution is not a progressive wave, the radiation 
condition as x+ + GO may be relaxed to admit bounded time-independent velocities 
(Wehausen 1960). 

Because (37c, d )  are inhomogeneous, may also be decomposed into 

2Y= 2!P+2P. (38) 

Following the procedure used to obtain the time-dependent evanescent interaction 
potential %ae, a solution for the time-independent evanescent interaction potential 
2!P is assumed to be of the form 

2!P(x,z) = alcosx a,exp(-a,x) [ bm$, (i) $ma (i) +cm $; (i) qrn (:)I 
m-2 

where (404 
(tanh h - a, tan a, A) =- a; b, = -$o 
(tanh2 h + tan2 a, h) wo(a; + 1) ' 

(a, tanh h+ tan a, h) 
(tanha h+ tan2a, h) 

a,(af - 1) 
2w0(a;+ 1) ' 

c,= -r, =- 

correct to second-order in 8. 

For generic planar wavemakers where the first-order evanescent eigenseries 
converges only as fast as a, * (a, h)-2 - [(m - 1) x ] - ~ ,  the single summation series in 
(39) will converge at least as fast as a,cm K (amh)-l - [ (m-l )z] - ' .  This limits the 
practical application of the time-independent evanescent interaction potential !P to 
those planar wavemaker geometries where the convergence of the first-order 
evanescent eigenseries improves to a, =- (a, h)-s N [(m- 1) XI-'. 

P must satisfy a homo- 
geneous free-surface condition, and the time-independent terms in the nonlinear 
inhomogeneous wavemaker boundary condition in (37 d )  given by 

The time-independent wavemaker-forced potential 

x = O ,  - h < z < O .  ax 2h 

Following the procedure used to obtain the time-dependent wavemaker-forced 
8-2 
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wave potential zV, a solution for zly' is assumed to be given by the following 
eigenfunction expansion : 

where 

provided that ,ujh=jn; j20. 
The coefficients d j  may be computed from 

Substituting (40) and (A 8) into (44a) and integrating gives 

For j = 0, doh = (2wO)-l which is exactly equal to the magnitude of the Stokes drift ! 
This is discussed in more detail in $3. 

For generic planar wavemakers where the first-order evanescent eigenseries 
converges only as fast as a, =s (a, h)-2 - [ (m- 1) ~ C C ] - ~ ,  the series in ( 4 4 b )  for d, will 
converge at least as fast as a, a;;;' K (a, h)-6 - [(m- 1) x]-~.  The eigenseries for 
+,(z/h) will converge at least as fast as (p, h)-;' = (jn)-;'. 

3. Stokes drift 
It is of interest to evaluate the mean horizontal fluid momentum per unit area 

correct to second-order in E .  The time- and depth-averaged mean horizontal fluid 
momentum per unit area is defined by (Phillips 1977) 

where the dimensionless temporal averaging operator is defined by 

(*),, = (2R)-l jp ( *  ) d7 

and UE(,, is an Eulerian (Lagrangian) horizontal velocity component. 

3.1. Eulerian 

The horizontal component of the Eulerian velocity determined from (l), (13), and 
(24), is approximately 

ME = u,+ 6 @ + 0 ( € 2 ) .  (46) 
The mean horizontal component 8, that is forced by the time-independent boundary 
conditions f6(g51, 4,) and Wl(q51, 6,  z/h) may be computed from 2Y(x,  z )  according to 
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where Uy',e(am,amhrx) = -$ x amq5,(0)[sinx-amcosx]exp(-amx) (47b) 
m-2 

and Uy, &lo) = -€do h = - €(2Wo)-1. (47c) 

Similarly, the mean horizontal component De may be estimated from the first- 
order eigenmodes l@(x, z, 7 )  according to 

= Ua,e(am, a m  h, + U G ,  aO(wo), ( 4 8 4  

and %,,(~,, = s(2%-', (484 

where UG,e(am,amh,x)  = $ amq5,(0) (sinz-amcosx)exp(-amz) (48b) 
m-2 

which is equal in magnitude but opposite in direction to UF,m(do)! We have the 
remarkable result that a component of the complete time-independent solution to 
the nonlinear boundary-value problem correct to second-order in E accurately 
estimates the mean return current in a closed wave flume. Previous estimates of this 
mean return current have been computed by an alternative kinematic principle 
(Longuet-Higgins 1953). 

3.2. Lagrangian 
The dimensionless Lagrangian induced-streaming velocity may be estimated from 
the Eulerian velocity (Mei 1983) by, approximately, 

where the dimensionless Lagrangian induced-streaming velocity is U, = [UL, W,].  
The mean horizontal component UL(x,  z/h) is, approximately, 

and the mean vertical component WL(x, z/h)  is, approximately, 

(a,sinx-cosx)+qj; (a,cosz+sinx) . (50b) 1 
Substituting (50a) into (45) and integrating gives the mean horizontal momentum 

per unit area as, approximately, 

dl, = ' ~ , e ( ' m , a m ~ , ~ ) + ~ ~ , m ( d o ) + ~ ~ , e ( a , , ~ , h , ~ ) + ~ ~ , ~ ( W O ) + 0 ( ~ 2 ) ,  (51) 

which is identical to the mean horizontal momentum per unit area from the Eulerian 
description (Phillips (1977). 
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FIQURE 4. Spatial distribution of the second-order in E time-independent velocity for a full- 
draught piston wavemaker (Lo = TLI2x). 

3.3. Time-independent Eulerian velocity 

The mean horizontal momentum per unit area computed from (47) and (48) and from 
(51) give, approximately, 

ME(L) - OF+ O@+ O ( 2 )  - 0 

correct to second-order in 8.  

Again, this result is because the component 0, derived from the time-independent 
solution ,!Pis equal in magnitude but opposite in direction to the Stokes drift in both 
the near and far fields. The spatial distribution of the time-independent Eulerian 
velocities computed from the time-independent potential Y reveal the importance 
of the contributions from the first-order evanescent eigenseries. 

The horizontal component is 

a 2 y e  a 2 p  u, x,- =--8--€- ( ~ h )  ax ax 

= -(%) 2 ~ o  m-2 amam[+l(~)+m(~)(oosx+amsinx) 

+ 4; (i) +; (i) (a, cos 2- sinz) exp ( -am x) 1 
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FIGURE 5. Spatial distribution of the second-order in 6 time-independent velocity for a full- 
draught hmged wavemaker (Lo = !P/2n). 

and the vertical component is 

a , ~  a2v 
ax ax 

w.(x,;) = -€--€- 

where $;(z/h) = (2 -a,,)+ sinp, h( 1 + z/h). The series for both the horizontal and 
vertical components computed from ,!P in (53) are seen to be non-converging for 
those planar wavemaker geometries which generate first-order eigenseries that 
converge only as fast as a, a (a, h)-, - [(m- 1) x ] - ~ .  

The magnitude of the time-independent velocity vector e-l[V&x, x/h) + Vdx,  z/h)]f 
is illustrated in figures 4 and 5 for two relative water depths; namely h/Lo = 0.2 
(relatively shallow water) ; and h/Lo = 0.5 (relatively deep water) ; where the deep- 
water wavelength Lo = P/27t. Figures 4 and 5 illustrate the importance of the first- 
order evanescent eigenseries to the mean circulation pattern in a closed wave flume, 
especially near the wavemaker. The far-field velocity is equal to do which was shown 
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in (47c) to be proportional to the Stokes drift and to accurately estimate the 
magnitude of the mean return flow due to Stokes drift. 

4. Summary 
A complete nonlinear analytical solution that is correct to second-order in E is 

given for the two-dimensional wave motion forced by a generic planar wavemaker. 
The planar wavemaker may be double articulated and includes both piston and 
hinged wavemakers of variable draught. The solution for the second-order potential 
is a linear combination of three time-dependent potentials and two time-independent 
potentials. 

The first-order evanescent eigenseries contribute to the second-order solution in 
two important ways. The first way is that when computing the amplitude of the 
second-order free wave, it was shown in (36) that the first-order eigenseries cannot 
be neglected. The second way is that some of the second-order potentials which 
contain the first-order eigenseries are non-converging for those geometries of generic 
planar wavemakers that converge only as fast as a, * (a, h)-a - [(m- 1) ~ r ] - ~ .  This 
gives the important result that second-order solutions to the nonlinear wavemaker 
boundary-value problem obtained by Stokes expansion will not converge for all 
planar wavemaker geometries. 

When the wavemaker kinematic boundary condition is applied on the instan- 
taneous boundary at x = x(z/h,  t )  of a planar wavemaker, the time-independent 
forcing term K Vx.V@ is non-zero only for a hinged wavemaker ; but it becomes non- 
zero for both piston and hinged wavemakers when the kinematic boundary condition 
is expanded in a Maclaurin series about the equilibrium position at  x = 0. The time- 
independent forcing on the free-surface boundary for both piston and hinged 
wavemakers is evanescent only in z. This time-independent solution has been 
neglected in previous Stokes expansions for the nonlinear wavemaker boundary- 
value problem. 

The mean horizontal momentum per unit area computed from both the Eulerian 
and the Lagrangian methods is equal to zero, correct to second-order in E .  This is a 
result of the time-independent potentials generating mean horizontal velocities 
which are equal in magnitude but opposite in direction to the Stokes drift generated 
from both the propagating and evanescent first-order potentials. The complete 
solution to the weakly nonlinear wavemaker boundary-value problem accurately 
estimates the mean return current needed to  maintain zero mass flux in a bounded 
domain. This estimate for the mean return current due to the Stokes drift generated 
by the propagating wave is usually estimated from a principle of kinematic 
conservation of mass flux. 
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The inner product terms that are required to compute the coefficients of the 
eigenfunctions used in the second-order potentials 2@'(x, z ,  7 )  and 2'Y'(x, z )  are defined 
by the integral 

which may be integrated to obtain 

40; for A,(@) = Q,(z/h) and A, = /3, 
0 for A,(z/h) = $,(z/h) and A, =p,  

Sa, = -A,tanh,h = 
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Note that for n = 1, a1 = i and 

sin[ih(l+z/h)] - isinh[h(l +z/h)] 

121 n1 

- 
9 4; = 

so that a n ( ( # m  # ; ) I ,  n j ) z / h  = - ((#m #;)’, A j ) z / h  ; = 

Similarly, the inner product between #; and fm required in order to compute the 
dimensionless mean horizontal momentum per unit area may be recovered from (A 8) 
as 

# k ) z / h  = am((#l #k)’, $‘o)z/h = -wi#l(o) dm(o)* 
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